Utilization of a Porous Cu Interlayer for the Enhancement of Pb-Free Sn-3.0Ag-0.5Cu Solder Joint

نویسندگان

  • Nashrah Hani Jamadon
  • Wen Tan
  • Farazila Yusof
  • Tadashi Ariga
  • Yukio Miyashita
  • Mohd Hamdi
  • Ana Sofia Ramos
چکیده

The joining of lead-free Sn-3.0Ag-0.5Cu (SAC305) solder alloy to metal substrate with the addition of a porous Cu interlayer was investigated. Two types of porous Cu interlayers, namely 15 ppi—pore per inch (P15) and 25 ppi (P25) were sandwiched in between SAC305/Cu substrate. The soldering process was carried out at soldering time of 60, 180, and 300 s at three temperature levels of 267, 287, and 307 ◦C. The joint strength was evaluated by tensile testing. The highest strength for solder joints with addition of P25 and P15 porous Cu was 51 MPa (at 180 s and 307 ◦C) and 54 MPa (at 300 s and 307 ◦C ), respectively. The fractography of the solder joint was analyzed by optical microscope (OM) and scanning electron microscopy (SEM). The results showed that the propagation of fracture during tensile tests for solder with a porous Cu interlayer occurred in three regions: (i) SAC305/Cu interface; (ii) inside SAC305 solder alloy; and (iii) inside porous Cu. Energy dispersive X-ray spectroscopy (EDX) was used to identify intermetallic phases. Cu6Sn5 phase with scallop-liked morphology was observed at the interface of the SAC305/Cu substrate. In contrast, the scallop-liked intermetallic phase together with more uniform but a less defined scallop-liked phase was observed at the interface of porous Cu and solder alloy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved reliability of copper-cored solder joints under a harsh thermal cycling condition

This study simulated the performance of Cu-cored solder joints in microelectronic components subjected to the extreme thermal cycling conditions often encountered in the automobile industry by comparing the thermal cycling behavior of Cu-cored solder joints containing two different coating layers of Sn– 3.0Ag and Sn–1.0In with that of a baseline Sn–3.0Ag–0.5Cu solder joint under a severe temper...

متن کامل

Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present ...

متن کامل

High Reliability Lead-free Solder SN100C(Sn-0.7Cu-0.05Ni+Ge)

While the situation varies from country to country, nearly one year after the EU RoHS Directive came into force implementation of lead-free solder is progressing steadily. For lead-free soldering to be considered successful it is not sufficient just to have dealt with the challenges of mass production. It is also necessary to establish that the soldered joints produced are at least as reliable ...

متن کامل

The Effect of Eutectic Structure on the Creep Properties of Sn-3.0Ag-0.5Cu and Sn-8.0Sb-3.0Ag Solders

Solder joints are the main weak points of power modules used in harsh environments. For the power module of electric vehicles, the maximum operating temperature of a chip can reach 175 ◦C under driving conditions. Therefore, it is necessary to study the high-temperature reliability of solder joints. This study investigated the creep properties of Sn-3.0Ag-0.5Cu (SAC305) and Sn-8.0Sb-3.0Ag (SSA8...

متن کامل

In situ imaging of microstructure formation in electronic interconnections

The development of microstructure during melting, reactive wetting and solidification of solder pastes on Cu-plated printed circuit boards has been studied by synchrotron radiography. Using Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu as examples, we show that the interfacial Cu6Sn5 layer is present within 0.05 s of wetting, and explore the kinetics of flux void formation at the interface between the liqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016